Fish Passage Looking Forward 2025

Chris Vaughn Tacoma Public Utilities Sr. Fisheries Scientist Natural Resources | Science & Research

Background

- Passes outmigrating juvenile Coho, Steelhead, and Fall Chinook from the Tilton River
- 2015 study sought to determine which operational strategy yielded the highest FPS
- Residency time and survival

Baseline Operation								
		Secondary						
Holding Time (days)		Separator						
Chinook Forebay Releases	Mean	12.466						
Chinook Forebay Releases	Minimum	0.929						
Chinook Forebay Releases	Maximum	24.785						
4 Pump Operation								
		Secondary						
Holding Time (days)		Separator						
Chinook Forebay Releases	Mean	13.910						
Chinook Forebay Releases	Minimum	0.196						
Chinook Forebay Releases	Chinook Forebay Releases Maximum							
Drawdown Operation	Drawdown Operation							
		Secondary						
 Holding Time (days) 		Separator						
Chinook Forebay Releases	Mean	4.372						
Chinook Forebay Releases	Minimum	0.002						
Chinook Forebay Releases	Maximum	22.083						
	A DERICE AND							

Background

- Results showed low survival and long residency times for Chinook
- Efficacy varied across different operational strategies

	T ₁ (4 pumps)		T ₂ (Drawdown)		T ₃ (Baseline)	
Reach	Ŝ	$\widehat{SE}(\hat{S})$	Ŝ	$\widehat{SE}(\hat{S})$	Ŝ	$\widehat{SE}(\hat{S})$
Louver bay – Secondary separator	1.0	0.0	1.0	0.0	1.0	0.0
Secondary separator – Transport tank	0.6250	0.0699	0.8961 ^a	0.0515	0.6531	0.0680
Transport tank – Tailrace	0.4000	0.0894	0.5238 ^b	0.0771	0.3125	0.0819
Tailrace – Upper Barrier	1.0	0.0	0.8696	0.0702	0.9000	0.0949
Upper Barrier – Barrier Dam	1.0	0.0	0.9500	0.0487	1.0	0.0
a. $P < 0.01, T_2 > T_1, T_3$ b. $P < 0.05, T_2 > T_3$						

Background

- Results led to adaptive management
- 2025 study will seek further operational refinement/infrastructure alteration

- Morphometrics
 - Condition factor
 - Age/life History Stage
 - Disease/parasite load
- Environmental
 - Discharge
 - Water temp
 - Turbidity
 - Outmigration timing (within season)
- Operational
 - Hydropower Operations
 - Drawdown Operations
 - Density
 - Initial capture
 - Recapture

Preliminary Design for Mayfield

CFNSC - Background

- CFNSC was installed in 2017
 - Designed to be highly adjustable to increase FPS
 - Learning effects of operational changes = adaptive management
- Acoustic telemetry deployed in 2019 in conjunction with routine FCE work.

Species	Release Date	Fish Capture Efficiency	Fish Released	Fish Recaptured	Fish Recovered
Chinook	June 27, 2024	66.0%	100	66	0
	July 4, 2024	52.0%	100	52	0
	July 9, 2024	30.0%	50	15	0
	July 12, 2024	36.0%	50	18	0
	July 16, 2024	32.0%	50	16	0
	July 19, 2024	34.0%	50	17	0
	July 23, 2024	36.0%	50	18	0
	July 26, 2024	36.0%	50	18	1
	July 30, 2024	20.0%	50	10	0
	August 2, 2024	22.0%	50	11	0
	August 6, 2024	22.0%	50	11	0

CFNSC

- Morphometrics
 - Condition factor
- Environmental
 - Discharge
 - Water temp surface
 - Water temp at depth
 - Turbidity
 - Solar radiation
 - Barometric pressure
 - Outmigration timing (within season)

- Operational
 - Proportion unit 1:total Q*
 - Turbine variation (SD_{turbines})*
 - Proportion unit 1:spillbay flume flow
 - Percent spill of discharge
 - Capture zone velocity
 - Differential pressure
 - Block

Questions?