

Tacoma Water Seismic Planning

Tacoma Public Utilities
Public Utility Board Study Session
May 22, 2019

Presentation Overview

Overview of seismic planning work

- Current-state findings: Damage and restoration estimates
- Level of Service discussion: policy & implications
- Key work ahead

Modern Resilience Planning

DOCUMENT	DRIVER
1996 Seismic Assessment	Post Northridge Earthquake
2003 Vulnerability Assessment	Bioterrorism Preparedness and Response Act of 2002 (Post 9/11 – Malevolent Threats only)
2015 All Hazards Vulnerability Assessment	Proactive, with all-hazards perspective
2016-2018 Phase 1 & 2 Forum Resilience Plans	Proactive Regional Resilience Planning
2019-2020 New All Hazards Vulnerability Assessment requirement	America's Water Infrastructure Act (AWIA) of 2018 (New all hazards vulnerability assessment requirement)

2015 All-Hazards Vulnerability Assessment

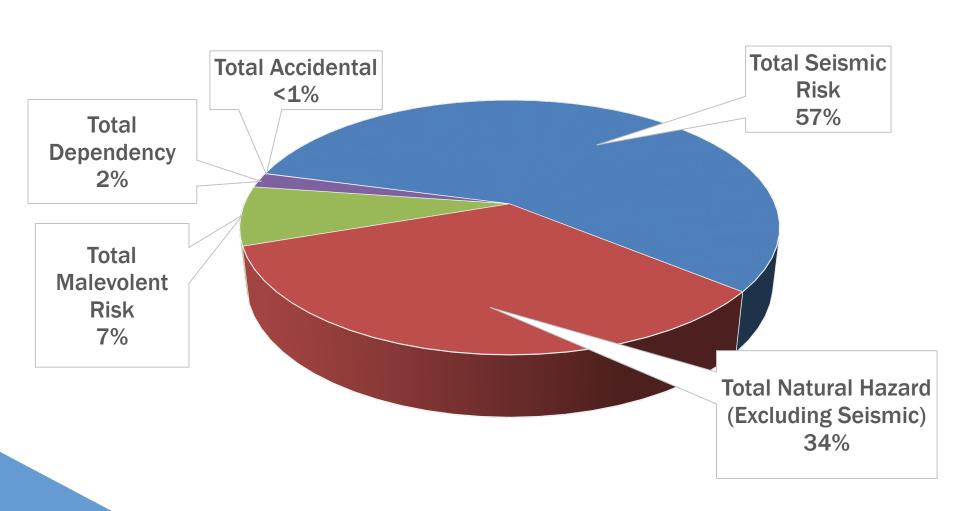
Proximity Threat

- Rail
- Other Targets

Dependency Threat

- Loss of Utilities
- Loss of Suppliers
- Loss of Employees

Natural Hazards


- Earthquake
- Flood
- Ice Storm/ Snow
- Wildfire / Plant Fire
- Lahar
- Volcano
- Drought
- Tsunami

Malevolent Threats

- Diversion/Theft
- Product contamination
- Process Sabotage
- Human Error
- Aircraft / Marine /Automobile Attack
- Assailant

2015 All-Hazards Vulnerability Assessment Major risk categories

Water Supply Forum Resiliency Project

Preparing for Water Supply Disruption

EARTHQUAKE

WATER QUALITY

CLIMATE CHANGE

DROUGHT

Earthquake Resiliency

Cascadia Subduction Zone

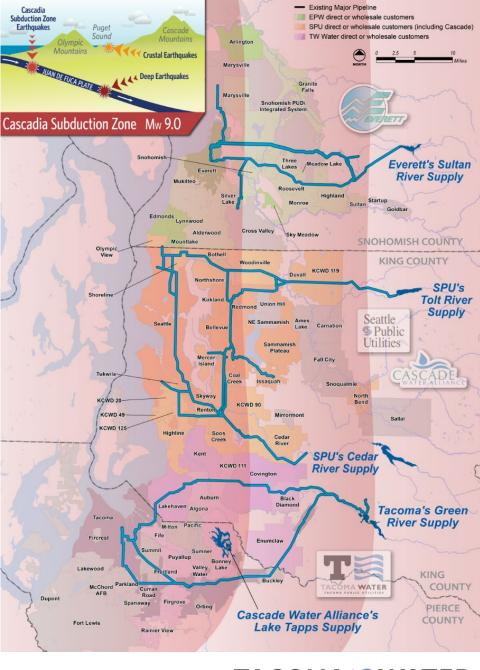
ANNALS OF SEISMOLOGY JULY 20, 2015 ISSUE

THE REALLY BIG ONE

An earthquake will destroy a sizable portion of the coastal Northwest. The question is when.

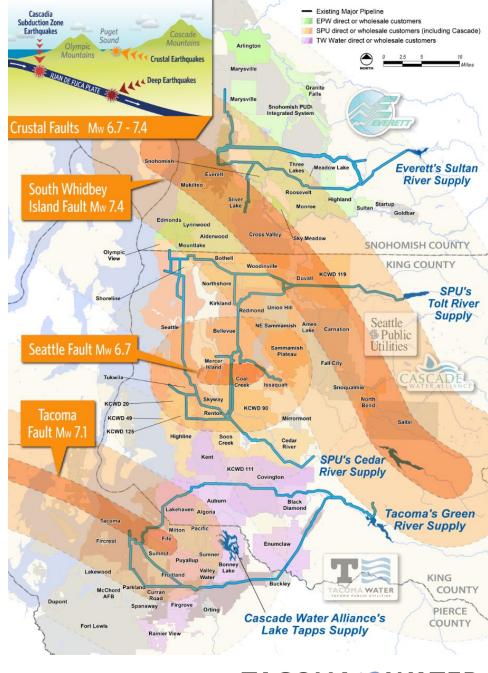
By Kathryn Schulz

hen the 2011 earthquake and tsunami struck Tohoku, Japan, Chris
Goldfinger was two hundred miles away, in the city of Kashiwa, at an international meeting on seismology. As the shaking started, everyone in the room began to laugh. Earthquakes are common in Japan—that one was the third of the week—and the participants were, after all, at a seismology conference. Then everyone in the room checked the time.


Seismologists know that how long an earthquake lasts is a decent proxy for its magnitude. The 1989 earthquake in Loma

The next full-margin rupture of the Cascadia subduction zone will spell the worst natural disaster in the history of the continent.

Illustration by Christoph Niemann; Map



Earthquake Resiliency

Surface (Crustal) Faults:

- South Whidbey Island Fault
- Seattle Fault
- Tacoma Fault

Earthquake Resiliency

Physical Damage

Extensive damage to water system facilities,

Over 100 transmission pipeline breaks/ leaks

Up to 6,000 distribution system breaks/leaks

Restoration Time

Up to 60 days to restore water

Economic Impact

Cost of water system damage could exceed \$2 billion.

Likelihood

14 percent
chance of Mw9.0
Cascadia
Subduction event
in next 50 years
15 percent
chance of Mw6.5
or larger surface
fault event in next
50 years

2015 All-Hazards Vulnerability Assessment Seismic System Performance

Alaska 1964

Mw 9.2
Duration 4 minutes
\$2.3 Billion in Damage
Subduction – type EQ

Figure 4-9. Water System Restoration Time – Cascadia Scenario (500 Year Return Period)

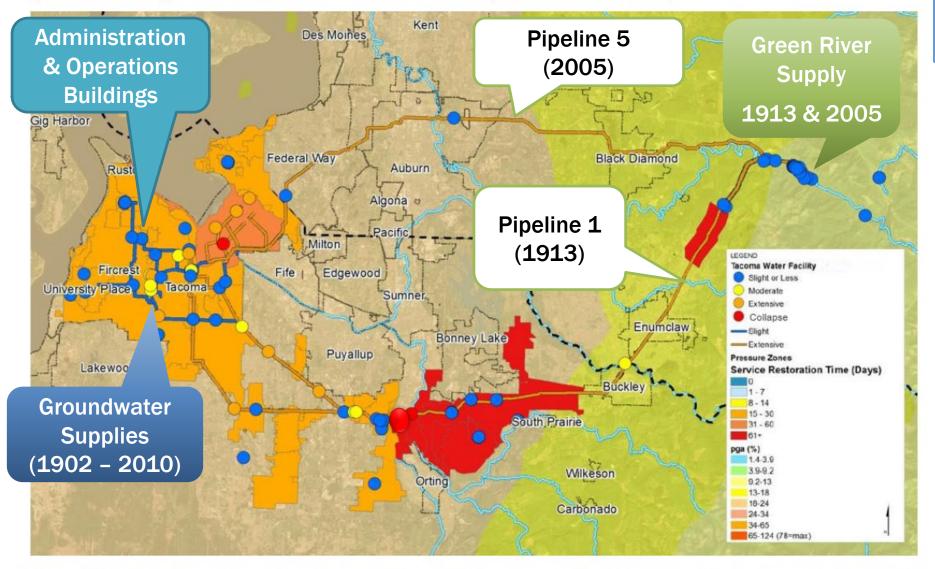


Figure 4-9 depicts the estimated water system restoration time in the Cascadia scenario for each distribution zone, as well as critical facilities. The longest outages are again anticipated for distribution zones to the south and east along Pipeline 1. Areas including Bonney Lake, Fennel Creek, Prairie Ridge, and Cumberland show prolonged customer outage lasting more than 61 days. Additionally, the 251 – Low Zone is expected to have customer outage estimated at 40 days, which falls in the 31 to 60 day range.

Service restoration time (4 seismic scenarios – Tacoma Water)

Table 4-3. Post-Earthquake Scenario System Restoration Times Summary

Percent Service Restored	Days after EQ Event						
	Cascadia	Deep Benioff	Shifted Tacoma	SWIF			
50%	21	15	31	0			
75%	25	29	33	0			
90%	27	31	37	0			
99%	67	37	71	9			

The outage times were based on the expected damage, and the estimated restoration times of critical components required to restore service.

Source: Tacoma Water Seismic Vulnerability Assessment

Level of Service

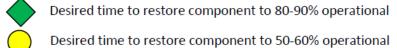
Level of Service (Customer Experience)

Routine operational Level of Service

Pressure, reliability, quality

Post-Event (Earthquake)
Level of Service

-Expected (Acceptable) restoration time?


- Expected (Acceptable) quality (initially, ultimately)

Conceptual Level of Service Goals

Table 6-1. Cascadia Scenario compared to Preliminary Target Long-Term PE-LOS Goals for Example 500-Year Return Earthquake

Event Occurs	0-24 Hours	1-3 Days	3-7 Days	1-2 Weeks	2-4 Weeks
,		X		•	
	\rightarrow				×
					•
					×
				0	X
		X	\		×
					×

Desired time to restore component to 20-30% operational

Tacoma Water Anticipated Results (80-90% Operational)

Tacoma Water Anticipated Results (20-30% operational)

¹Further evaluation required to evaluate scorecard for Water supply to critical facilities

Conceptual Level of Service Goals

Table 6-2. Shifted Tacoma Scenario compared to Preliminary Target Long-Term PE-LOS Goals for Example 2,500-Year Return Earthquake

System Function		0-24 Hours	1-3 Days	3-7 Days	1-2 Weeks	2-4 Weeks	1-3 Months
Potable water available at supply source	•		×			\rightarrow	
Main transmission facilities, pipes, pump stations, and reservoirs operational			\			×	
Water supply to critical facilities available ¹		•					
Water for fire suppression at key supply points				· •		×	
Water for fire suppression at fire hydrants			•	•			*
Water available at community distribution centers/points				×		×	•
Distribution system operational	•	•	•				X

Desired time to restore component to 80-90% operational

Desired time to restore component to 50-60% operational

Desired time to restore component to 20-30% operational

Tacoma Water Anticipated Results (80-90% operational)

Tacoma Water Anticipated Results (20-30% operational)

¹Further evaluation required to evaluate scorecard for Water supply to critical facilities

Conceptual Level of Service Goals

Table 8. PE-LOS Goals for a CSZ Earthquake Scenario. (Attain within 50 years and establish interim milestones leading to these goals.)

System Component	Service Provided		Immediately After	24 Hours	3 Days	7 Days	14 Days	1 Month
Water Supply	Supply transmission system, provide local distribution source (wells), fill tank trucks.	Quantity	Storage	Storage	50% AWD ¹	50% AWD ¹	50% AWD ¹	AAD
		Quality	Non-Potable ⁴	Non-Potable ⁴	Non- Potable ⁵	Non- Potable ⁵	Potable	Potable
Transmission to End Points ²	Supply terminal reservoir, wholesale meters along transmission line, provide fire suppression along transmission lines. Includes critical facilities (pump stations, treatment etc.)		50% AWD ¹	50% AWD ¹	50% AWD ¹	50% AWD ¹	AWD	AAD
Transmission/Supply to Major Regional Essential Services ³	Serve essential customers (e.g. hospitals).		50% AWD ¹	50% AWD ¹	50% AWD ¹	50% AWD ¹	50% AWD¹	AWD
Backbone	Supply special seismic resistant essential customers, service to distribution points, provide fire along backbone.	Individual utilit	y decision					
System Storage	Support backbone and local distribution		limited water from storage for fire, drinking Individual utility decision					
Distribution	Service to individual customers residential, business, industrial. fire hydrants for fire suppression	Water to	Individual utility decision					

AWD = Average Winter Demand; AAD = Average Annual Demand

Notes:

- Percentages represent the estimated percent of total delivery. Not all areas will be feasible to serve within the first month.
- 2. Transmission to End Points includes one or more transmission pipelines providing the noted level of service connecting the supplies to and including the first terminal reservoirs downstream from each supply. At the utility's discretion, additional transmission pipeline segments and reservoirs can be included in this criterion.
- 3. Transmission/Supply to Major Regional Essential Services includes a supply, and transmission line supplying water to hospitals designated as essential by the utility. The supply and transmission may be dedicated to supply to essential services and be different than the supply and transmission system serving the overall utility service area. Additional facilities in addition to hospitals such as nursing homes, may be designated by the utility.
- 4. Water supply and water held in terminal reservoir are expected to be potable immediately after the event. However, there could be short-term disruptions/damage to water

The Policy Discussion:

Establishing a Post-Event Level of Service Goal

Considerations

- Time span to achieve the identified service level
 - 50-70 years may be a realistic goal
- Preferred evaluation and goal development process
 - Board, Council, Public
- Needed information
 - Relationship between service level goal and cost to achieve
 - Priority order of work

Key work ahead

Infrastructure

- Focused hardening of groundwater supply and operations center components.
- Continued development and policymaker adoption of target Post-Earthquake Levels of Service, and a seismic resiliency investment plan to achieve those targets over a period of time.
- Priority decisions with respect to hardening supply to hospitals.
- Build seismic resilience more directly into infrastructure renewal.

Programmatic

- Continued Development of a robust Emergency Management capability.
- Continued and sustained relationships with Emergency Managers & Responders at all levels of government.
- Conversations with customers and employees about realistic expectations and personal preparedness.

